Strength of tail dependence based on conditional tail expectation

نویسندگان

  • Lei Hua
  • Harry Joe
چکیده

We use the conditional distribution and conditional expectation of one random variable given the other one being large to capture the strength of dependence in the tails of a bivariate random vector. We study the tail behavior of the boundary conditional cumulative distribution function (cdf) and two forms of conditional tail expectation (CTE) for various bivariate copula families. In general, for nonnegative dependence, there are three levels of strength of dependence in the tails according to the tail behavior of CTEs: asymptotically linear, sub-linear and constant. For each of these three levels, we investigate the tail behavior of CTEs for the marginal distributions belonging to maximum domain of attraction of Fréchet and Gumbel, respectively, and for copula families with different tail behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tail Dependence for Regularly Varying Time Series

We use tail dependence functions to study tail dependence for regularly varying RV time series. First, tail dependence functions about RV time series are deduced through the intensity measure. Then, the relation between the tail dependence function and the intensity measure is established: they are biuniquely determined. Finally, we obtain the expressions of the tail dependence parameters based...

متن کامل

Tail dependence functions and vine copulas

Tail dependence and conditional tail dependence functions describe, respectively, the tail probabilities and conditional tail probabilities of a copula at various relative scales. The properties as well as the interplay of these two functions are established based upon their homogeneous structures. The extremal dependence of a copula, as described by its extreme value copulas, is shown to be co...

متن کامل

Tail Risk of Multivariate Regular Variation

Tail risk refers to the risk associated with extreme values and is often affected by extremal dependence among multivariate extremes. Multivariate tail risk, as measured by a coherent risk measure of tail conditional expectation, is analyzed for multivariate regularly varying distributions. Asymptotic expressions for tail risk are established in terms of the intensity measure that characterizes...

متن کامل

Asymptotic Analysis of Multivariate Coherent Risks

Multivariate coherent risks can be described as classes of portfolios consisting of extra capital reserves that are used to cover potential losses under various scenarios. Tail risk refers to the risk associated with extremal events and is often affected by extremal dependence among multivariate extremes. Multivariate tail risk, as measured by a coherent risk measure of tail conditional expecta...

متن کامل

The Tail Mean-Variance Model and Extended Efficient Frontier

In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Multivariate Analysis

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2014